標簽:highlight 跳表 cbe 指定 復雜 link 計算 適合 via
JDK 提供的這些容器大部分在 java.util.concurrent
包中。
我們知道 HashMap 不是線程安全的,在并發場景下如果要保證一種可行的方式是使用 Collections.synchronizedMap()
方法來包裝我們的 HashMap。但這是通過使用一個全局的鎖來同步不同線程間的并發訪問,因此會帶來不可忽視的性能問題。
所以就有了 HashMap 的線程安全版本—— ConcurrentHashMap 的誕生。在 ConcurrentHashMap 中,無論是讀操作還是寫操作都能保證很高的性能:在進行讀操作時(幾乎)不需要加鎖,而在寫操作時通過鎖分段技術只對所操作的段加鎖而不影響客戶端對其它段的訪問。
ConcurrentHashMap 取消了 Segment 分段鎖,采用 CAS 和 synchronized 來保證并發安全。數據結構跟 HashMap1.8 的結構類似,數組+鏈表/紅黑二叉樹。Java 8 在鏈表長度超過一定閾值(8)時將鏈表(尋址時間復雜度為 O(N))轉換為紅黑樹(尋址時間復雜度為 O(log(N)))
synchronized 只鎖定當前鏈表或紅黑二叉樹的首節點,這樣只要 hash 不沖突,就不會產生并發,效率又提升 N 倍。
在很多應用場景中,讀操作可能會遠遠大于寫操作。由于讀操作根本不會修改原有的數據,因此對于每次讀取都進行加鎖其實是一種資源浪費。我們應該允許多個線程同時訪問 List 的內部數據,畢竟讀取操作是安全的。
這和我們之前在多線程章節講過 ReentrantReadWriteLock
讀寫鎖的思想非常類似,也就是讀讀共享、寫寫互斥、讀寫互斥、寫讀互斥。JDK 中提供了 CopyOnWriteArrayList
類比相比于在讀寫鎖的思想又更進一步。為了將讀取的性能發揮到極致,CopyOnWriteArrayList
讀取是完全不用加鎖的,并且更厲害的是:寫入也不會阻塞讀取操作。只有寫入和寫入之間需要進行同步等待。這樣一來,讀操作的性能就會大幅度提升。那它是怎么做的呢?
CopyOnWriteArrayList
類的所有可變操作(add,set 等等)都是通過創建底層數組的新副本來實現的。當 List 需要被修改的時候,我并不修改原有內容,而是對原有數據進行一次復制,將修改的內容寫入副本。寫完之后,再將修改完的副本替換原來的數據,這樣就可以保證寫操作不會影響讀操作了。
從 CopyOnWriteArrayList
的名字就能看出CopyOnWriteArrayList
是滿足CopyOnWrite
的 ArrayList,所謂CopyOnWrite
也就是說:在計算機,如果你想要對一塊內存進行修改時,我們不在原有內存塊中進行寫操作,而是將內存拷貝一份,在新的內存中進行寫操作,寫完之后呢,就將指向原來內存指針指向新的內存,原來的內存就可以被回收掉了。
讀取操作沒有任何同步控制和鎖操作,理由就是內部數組 array 不會發生修改,只會被另外一個 array 替換,因此可以保證數據安全。
/** The array, accessed only via getArray/setArray. */ private transient volatile Object[] array; public E get(int index) { return get(getArray(), index); } @SuppressWarnings("unchecked") private E get(Object[] a, int index) { return (E) a[index]; } final Object[] getArray() { return array; }
CopyOnWriteArrayList 寫入操作 add() 方法在添加集合的時候加了鎖,保證了同步,避免了多線程寫的時候會 copy 出多個副本出來。
/** * Appends the specified element to the end of this list. * * @param e element to be appended to this list * @return {@code true} (as specified by {@link Collection#add}) */ public boolean add(E e) { final ReentrantLock lock = this.lock; lock.lock();//加鎖 try { Object[] elements = getArray(); int len = elements.length; Object[] newElements = Arrays.copyOf(elements, len + 1);//拷貝新數組 newElements[len] = e; setArray(newElements); return true; } finally { lock.unlock();//釋放鎖 } }
Java 提供的線程安全的 Queue 可以分為阻塞隊列和非阻塞隊列,其中阻塞隊列的典型例子是 BlockingQueue,非阻塞隊列的典型例子是 ConcurrentLinkedQueue,在實際應用中要根據實際需要選用阻塞隊列或者非阻塞隊列。 阻塞隊列可以通過加鎖來實現,非阻塞隊列可以通過 CAS 操作實現。
從名字可以看出,ConcurrentLinkedQueue
這個隊列使用鏈表作為其數據結構.ConcurrentLinkedQueue 應該算是在高并發環境中性能最好的隊列了。它之所有能有很好的性能,是因為其內部復雜的實現。
ConcurrentLinkedQueue 內部代碼我們就不分析了,大家知道 ConcurrentLinkedQueue 主要使用 CAS 非阻塞算法來實現線程安全就好了。
ConcurrentLinkedQueue 適合在對性能要求相對較高,同時對隊列的讀寫存在多個線程同時進行的場景,即如果對隊列加鎖的成本較高則適合使用無鎖的 ConcurrentLinkedQueue 來替代。
上面我們己經提到了 ConcurrentLinkedQueue 作為高性能的非阻塞隊列。下面我們要講到的是阻塞隊列——BlockingQueue。阻塞隊列(BlockingQueue)被廣泛使用在“生產者-消費者”問題中,其原因是 BlockingQueue 提供了可阻塞的插入和移除的方法。當隊列容器已滿,生產者線程會被阻塞,直到隊列未滿;當隊列容器為空時,消費者線程會被阻塞,直至隊列非空時為止。
BlockingQueue 是一個接口,繼承自 Queue,所以其實現類也可以作為 Queue 的實現來使用,而 Queue 又繼承自 Collection 接口。下面是 BlockingQueue 的相關實現類:
下面主要介紹一下:ArrayBlockingQueue、LinkedBlockingQueue、PriorityBlockingQueue,這三個 BlockingQueue 的實現類。
ArrayBlockingQueue 是 BlockingQueue 接口的有界隊列實現類,底層采用數組來實現。ArrayBlockingQueue 一旦創建,容量不能改變。其并發控制采用可重入鎖來控制,不管是插入操作還是讀取操作,都需要獲取到鎖才能進行操作。當隊列容量滿時,嘗試將元素放入隊列將導致操作阻塞;嘗試從一個空隊列中取一個元素也會同樣阻塞。
ArrayBlockingQueue 默認情況下不能保證線程訪問隊列的公平性,所謂公平性是指嚴格按照線程等待的絕對時間順序,即最先等待的線程能夠最先訪問到 ArrayBlockingQueue。而非公平性則是指訪問 ArrayBlockingQueue 的順序不是遵守嚴格的時間順序,有可能存在,當 ArrayBlockingQueue 可以被訪問時,長時間阻塞的線程依然無法訪問到 ArrayBlockingQueue。如果保證公平性,通常會降低吞吐量。如果需要獲得公平性的 ArrayBlockingQueue,可采用如下代碼:
private static ArrayBlockingQueue<Integer> blockingQueue = new ArrayBlockingQueue<Integer>(10,true);
LinkedBlockingQueue 底層基于單向鏈表實現的阻塞隊列,可以當做無界隊列也可以當做有界隊列來使用,同樣滿足 FIFO 的特性,與 ArrayBlockingQueue 相比起來具有更高的吞吐量,為了防止 LinkedBlockingQueue 容量迅速增,損耗大量內存。通常在創建 LinkedBlockingQueue 對象時,會指定其大小,如果未指定,容量等于 Integer.MAX_VALUE。
PriorityBlockingQueue 是一個支持優先級的無界阻塞隊列。默認情況下元素采用自然順序進行排序,也可以通過自定義類實現 compareTo()
方法來指定元素排序規則,或者初始化時通過構造器參數 Comparator
來指定排序規則。
PriorityBlockingQueue 并發控制采用的是 ReentrantLock,隊列為無界隊列(ArrayBlockingQueue 是有界隊列,LinkedBlockingQueue 也可以通過在構造函數中傳入 capacity 指定隊列最大的容量,但是 PriorityBlockingQueue 只能指定初始的隊列大小,后面插入元素的時候,如果空間不夠的話會自動擴容)。
簡單地說,它就是 PriorityQueue 的線程安全版本。不可以插入 null 值,同時,插入隊列的對象必須是可比較大小的(comparable),否則報 ClassCastException 異常。它的插入操作 put 方法不會 block,因為它是無界隊列(take 方法在隊列為空的時候會阻塞)。
為了引出 ConcurrentSkipListMap,先帶著大家簡單理解一下跳表。
對于一個單鏈表,即使鏈表是有序的,如果我們想要在其中查找某個數據,也只能從頭到尾遍歷鏈表,這樣效率自然就會很低,跳表就不一樣了。跳表是一種可以用來快速查找的數據結構,有點類似于平衡樹。它們都可以對元素進行快速的查找。但一個重要的區別是:對平衡樹的插入和刪除往往很可能導致平衡樹進行一次全局的調整。而對跳表的插入和刪除只需要對整個數據結構的局部進行操作即可。這樣帶來的好處是:在高并發的情況下,你會需要一個全局鎖來保證整個平衡樹的線程安全。而對于跳表,你只需要部分鎖即可。這樣,在高并發環境下,你就可以擁有更好的性能。而就查詢的性能而言,跳表的時間復雜度也是 O(logn) 所以在并發數據結構中,JDK 使用跳表來實現一個 Map。
跳表的本質是同時維護了多個鏈表,并且鏈表是分層的,
最低層的鏈表維護了跳表內所有的元素,每上面一層鏈表都是下面一層的子集。
跳表內的所有鏈表的元素都是排序的。查找時,可以從頂級鏈表開始找。一旦發現被查找的元素大于當前鏈表中的取值,就會轉入下一層鏈表繼續找。這也就是說在查找過程中,搜索是跳躍式的。如上圖所示,在跳表中查找元素 18。
查找 18 的時候原來需要遍歷 18 次,現在只需要 7 次即可。針對鏈表長度比較大的時候,構建索引查找效率的提升就會非常明顯。
從上面很容易看出,跳表是一種利用空間換時間的算法。
使用跳表實現 Map 和使用哈希算法實現 Map 的另外一個不同之處是:哈希并不會保存元素的順序,而跳表內所有的元素都是排序的。因此在對跳表進行遍歷時,你會得到一個有序的結果。所以,如果你的應用需要有序性,那么跳表就是你不二的選擇。JDK 中實現這一數據結構的類是 ConcurrentSkipListMap。
標簽:highlight 跳表 cbe 指定 復雜 link 計算 適合 via
原文地址:https://www.cnblogs.com/xiaomaoyvtou/p/13356972.html